Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anthony C. Willis, ${ }^{\text {a }}$ Gulliver T. Dalton, ${ }^{\text {b }}$ Joseph P. Morrall, ${ }^{\text {b }}$ Marie P. Cifuentes ${ }^{\text {b }}$ and Mark G. Humphrey ${ }^{\text {b }}$ *
${ }^{\text {a Research School of Chemistry, Australian }}$ National University, Canberra, ACT 0200, Australia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia
Correspondence e-mail:
mark.humphrey@anu.edu.au

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
H -atom completeness 84%
Disorder in solvent or counterion
R factor $=0.032$
$w R$ factor $=0.036$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

cis,cis,cis-Aquabis[bis(diphenylphosphino)methane$\left.\kappa^{2} \boldsymbol{P}, \boldsymbol{P}^{\prime}\right]$ chlororuthenium(II) hexafluorophosphate methanol 1.73-solvate

The title compound, $\left[\mathrm{RuCl}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{PF}_{6} \cdot 1.73 \mathrm{CH}_{4} \mathrm{O}$, contains a pseudo-octahedral ruthenium complex cation with two bidentate diphosphine ligands and cis-disposed chloro and aqua ligands, together with a disordered hexafluorophosphate anion and disordered methanol solvent molecules. Identification as an aquaruthenium(II) complex rather than a hydroxoruthenium(III) complex was confirmed by cyclic voltammetry.

Comment

For the most part, the bond distances and angles of the title complex, (I), are unremarkable and similar to those of related complexes (Hartwig et al., 1991). Deviations from octahedral geometry at the Ru atom result from the presence of two chelating bis(diphenylphosphino)methane ligands [P1$\mathrm{Ru} 1-\mathrm{P} 2=71.08(3)^{\circ}$ and $\mathrm{P} 3-\mathrm{Ru} 1-\mathrm{P} 4=71.33$ (3) $\left.)^{\circ}\right]$. The $\mathrm{Ru}-\mathrm{P}$ distances for the mutually trans P -donor atoms [Ru1$\mathrm{P} 1=2.345$ (1) \AA and $\mathrm{Ru} 1-\mathrm{P} 3=2.3839$ (9) \AA] are significantly longer than those trans to the chloro and aqua ligands [Ru1$\mathrm{P} 2=2.3028$ (8) \AA and $\mathrm{Ru} 1-\mathrm{P} 4=2.312$ (1) \AA] .

(I)

Experimental

A solution of $c i s-\left[\mathrm{RuCl}_{2}(\mathrm{dppm})_{2}\right](50 \mathrm{mg}, 0.053 \mathrm{mmol})$, sodium hexafluorophosphate ($15 \mathrm{mg}, 0.089 \mathrm{mmol}$), water (2 ml) and triethylamine $(2 \mathrm{ml})$ in dichloromethane was stirred for 16 h . The solvent was removed under reduced pressure and the title complex was purified by passing a dichloromethane extract of the residue through an alumina plug with dichloromethane. Compound (I) was then recrystallized from dichloromethane/methanol, affording green crystals (yield $42.5 \mathrm{mg}, 75 \%$). Analysis calculated for $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{ClF}_{6} \mathrm{O}-$ $\mathrm{P}_{5} \mathrm{Ru} \cdot 1.73 \mathrm{CH}_{4} \mathrm{O}$: C $55.34, \mathrm{H} 4.65 \%$; found: C 55.39 , H 4.28%. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu \mathrm{PF}_{6} 846 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.35-8.20$ ($m, 40, \mathrm{Ph}$), $5.30\left(m, 4, \mathrm{CH}_{2}\right)$. UV-vis: $\lambda(\mathrm{THF}) 346 \mathrm{~nm}, \varepsilon$ $600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. E-chem: $\mathrm{Ru}^{\mathrm{II} / I I I}=0.51 \mathrm{~V}, \mathrm{Ru}^{\mathrm{III} / \mathrm{V}}=1.29 \mathrm{~V}$.

Crystal data

$\left[\mathrm{RuCl}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{PF}_{6}$.
$1.73 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=1123.67$
Monoclinic, $C c$
$a=20.4427$ (2) A
$b=12.7593$ (2) \AA
$c=21.0262$ (2) \AA
$\beta=112.6186(7)^{\circ}$
$V=5062.53$ (11) \AA^{3}
$Z=4$

Received 21 June 2004
Accepted 2 July 2004
Online 17 July 2004

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: by integration [Coppens (1970); imple-
mented in maXus (Mackay et al., 2000)]
$T_{\text {min }}=0.883, T_{\text {max }}=0.957$
50753 measured reflections

Refinement

Refinement on F
$R=0.032$
$w R=0.036$
$S=1.05$
8523 reflections
637 parameters
H -atom parameters constrained
Chebychev polynomial with five
parameters: $0.771,0.341,0.66$,

11446 independent reflections
8523 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.05$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-26 \rightarrow 26$
$k=-16 \rightarrow 16$
$l=-27 \rightarrow 27$
0.079 and 0.197 (Carruthers \& Watkin, 1979)
$(\Delta / \sigma)_{\max }=0.019$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-1.37 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
5819 Friedel pairs
Flack parameter $=-0.02(2)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ru} 1-\mathrm{Cl} 1$	$2.4656(8)$	$\mathrm{P} 2-\mathrm{C} 13$	$1.818(3)$
$\mathrm{Ru} 1-\mathrm{P} 1$	$2.345(1)$	$\mathrm{P} 2-\mathrm{C} 19$	$1.836(4)$
$\mathrm{Ru} 1-\mathrm{P} 2$	$2.3028(8)$	$\mathrm{P} 2-\mathrm{C} 49$	$1.857(3)$
$\mathrm{Ru} 1-\mathrm{P} 3$	$2.3839(9)$	$\mathrm{P} 3-\mathrm{C} 25$	$1.839(3)$
$\mathrm{Ru} 1-\mathrm{P} 4$	$2.312(1)$	$\mathrm{P} 3-\mathrm{C} 31$	$1.820(3)$
$\mathrm{Ru} 1-\mathrm{O} 1$	$2.196(3)$	$\mathrm{P} 3-\mathrm{C} 50$	$1.830(4)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.816(4)$	$\mathrm{P} 4-\mathrm{C} 37$	$1.827(4)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.827(4)$	$\mathrm{P} 4-\mathrm{C} 43$	$1.824(4)$
$\mathrm{P} 1-\mathrm{C} 49$	$1.830(3)$	$\mathrm{P} 4-\mathrm{C} 50$	$1.836(3)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{P} 1$	$92.74(3)$	$\mathrm{P} 3-\mathrm{Ru} 1-\mathrm{P} 4$	$71.33(3)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{P} 2$	$163.69(3)$	$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{O} 1$	$81.41(9)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 2$	$71.08(3)$	$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{O} 1$	$88.92(9)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{P} 3$	$93.70(3)$	$\mathrm{P} 2-\mathrm{Ru} 1-\mathrm{O} 1$	$95.83(9)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 3$	$172.00(4)$	$\mathrm{P} 3-\mathrm{Ru} 1-\mathrm{O} 1$	$96.74(9)$
$\mathrm{P} 2-\mathrm{Ru} 1-\mathrm{P} 3$	$102.60(3)$	$\mathrm{P} 4-\mathrm{Ru} 1-\mathrm{O} 1$	$166.73(9)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{P} 4$	$93.34(4)$	$\mathrm{P} 1-\mathrm{C} 49-\mathrm{P} 2$	$94.24(15)$
$\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 4$	$103.56(4)$	$\mathrm{P} 3-\mathrm{C} 50-\mathrm{P} 4$	$96.68(18)$
$\mathrm{P} 2-\mathrm{Ru} 1-\mathrm{P} 4$	$92.54(3)$		

The crystallographic asymmetric unit consists of one $\left[\mathrm{RuCl}\left(\mathrm{OH}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{+}$cation, one $\mathrm{PF}_{6}{ }^{-}$anion and methanol molecules of solvation at two general locations. One methanol molecule (atoms O3 and C52) appears to have an occupancy of less than 1.0. When it is present, the other methanol is sited at O 2 and C 51 , and the hexafluorophosphate F atoms are at $\mathrm{F} 1-\mathrm{F} 6$; when it is absent, the other methanol is at O21 and C511, and the hexafluorophosphate F atoms occupy sites F1, F21, F31, F4, F51 and F61, corresponding to a rotation about the F1-P5-F4 axis. The relative occupancies of these two alternatives were refined, the final values being 0.730 (5):0.270 (5). The O2-C51 and O21-C511 distances were restrained to be equal. The largest peaks in the final difference electron density map are located near the Ru atom. The space group is non-centrosymmetric but contains glide planes, giving a racemic structure. H atoms attached to C atoms of the cation were included at idealized positions and allowed to ride on the atoms to which they are bonded, with $\mathrm{C}-\mathrm{H}=1.0 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms of the aqua ligand and of the methanol molecules were not located.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data

Figure 1
A view of the cation of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (MSC, 1992-1997); software used to prepare material for publication: CRYSTALS.

We thank the Australian Research Council (ARC) for financial support and the Johnson-Matthey Technology Centre for the generous loan of ruthenium salts. MGH holds an ARC Australian Professorial Fellowship and MPC holds an ARC Australian Research Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hartwig, J. F., Bergman, R. G. \& Andersen, R. A. (1991). Organometallics, 10, 3344-3362.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus. Nonius BV, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.

